The Weighted Complexity and the Determinant Functions of Graphs
نویسندگان
چکیده
Abstract. The complexity of a graph can be obtained as a derivative of a variation of the zeta function [J. Combin. Theory Ser. B, 74 (1998), pp. 408–410] or a partial derivative of its generalized characteristic polynomial evaluated at a point [arXiv:0704.1431[math.CO]]. A similar result for the weighted complexity of weighted graphs was found using a determinant function [J. Combin. Theory Ser. B, 89 (2003), pp. 17–26]. In this paper, we consider the determinant function of two variables and discover a condition that the weighted complexity of a weighted graph is a partial derivative of the determinant function evaluated at a point. Consequently, we simply obtain the previous results and disclose a new formula for the Bartholdi zeta function. We also consider a new weighted complexity, for which the weights of spanning trees are taken as the sum of weights of edges in the tree, and find a similar formula for this new weighted complexity. As an application, we compute the weighted complexities of the product of the complete graphs.
منابع مشابه
AUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملOn Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
متن کاملWeighted Bartholdi zeta functions of graphs
We define the weighted Bartholdi zeta function of a graph G, and give a determinant expression of it. Furthermore, we define a weighted L-function of G, and present a determinant expression for the weighted L-function of G. As a corollary, we show that the weighted Bartholdi zeta function of a regular covering of G is a product of weighted L-functions of G. © 2005 Elsevier Ltd. All rights reser...
متن کاملGeneralized matrix functions, determinant and permanent
In this paper, using permutation matrices or symmetric matrices, necessary and sufficient conditions are given for a generalized matrix function to be the determinant or the permanent. We prove that a generalized matrix function is the determinant or the permanent if and only if it preserves the product of symmetric permutation matrices. Also we show that a generalized matrix function is the de...
متن کاملEffect of Magnetic Field on Torsional Waves in Non-Homogeneous Aeolotropic Tube
The effect of magnetic field on torsional waves propagating in non-homogeneous viscoelastic cylindrically aeolotropic material is discussed. The elastic constants and non-homogeneity in viscoelastic medium in terms of density and elastic constant is taken. The frequency equations have been derived in the form of a determinant involving Bessel functions. Dispersion equation in each case has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008